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I .  . 

Non-=near ccupled different ia l  equations f o r  the 2 transverse 

caaponeata of the local magnetic f i e l d  have been obtained f o r  a 

plan2 wave prqs,gating i n  a hmageneous cold Vlasap plasma under 

the influence of an external magnetic f ie ld  Bo, for any angle 

(90' - a) between Bo and the  wave vector- There ie oae exact 

single valued solution snd appraximste multiple valued sDlutions 

f o r  a = gOOj far a = Oo, the  solution is rzducible t o  an integral  

and is multiple valued. A perturbation method has been used t o  

obtain P rest r ic ted class of solutions f o r  i n t e m d i a t e  angles. 

A nwlerlcal example  has been worked out i n  de t a i l  f o r  a specific 

value of the  f i e l d  energy density and f o r  12 different angles; 

the  plaslsa parameters i n  this example are those appropriate t o  

the ionosphtre of the earth. Other periodic solutions ( f o r  

which the  perturbstion solutio2 does not work) may a l so  exist f o r  

small values of 3, b u t  they have not been considered here. 

A& 
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I 

I -  , -  

Non-linear p W e  waves pmpsgating i n  a ful ly  ionized "cald" 

collisionless plasrrr in a nagn?tic f i e l d  Bo have previously been 

studied f o r  the cases of prcrpE,rgstian across the  magnetic field Bo 

(magneto-soaic wl;ives), and propagation -el. t o  the  -tic 

f i e l d  (non-linear Alfwn Waves) . 
i n  detail by DBvls, Lbt and SchlGter (Z. N a t u r f o r s c h . l ~ ,  

916 (199))  and tb  plasma supports p a r k l y  c q r e s s i o n a l  i n f in i t e ly  

periodic waves for mst r i c t ed  values of the transverse e l ec t r i c  

field. 

also exist, same of w h i c h  are inewrpreseible, circularly polarized 

waves (V.C.A. Ferraro, Proc. Roy, SOC. (London) A233, 310 (1955); 

D. Montgapery, phys. Fluids - 2, 585 (1959); utber- are nan- 

polarized canpressible waves 

f The former caBe was cansidered 

Periodic solutions c o r m s p o n w  t o  non-linear Alfvkn waves 

I n  this stady, a mo= general t r e a t E n t  is given; we lock 

f o r  i n f in i t e ly  periodic waves for any angle (90" - cr) between 

the wave vector and t h e  applied magnetic f i e ld .  

constant-profile waves, there  has t o  be a ' h v e "  coordinate system 

( m o v i n g  with a constant velozity V relative t o  the labomtory 

frame) i n  which a l l  quantities are time independent. 

For such 

Ws postulate the existence of such a wave frame in part I1 

and, s ta r t ing  from the e q a t i o n s  of' motion and B!bxwell's equations., 

we derive coupled dim?nsionless d i f fe ren t ia l  equations f o r  the 

transverse caponents (i*e., those perpendicular t o  the dfrectian 

of propagation) of the magnetic f ie ld .  The coefficients of these 

equations contain the angle CY as a permeter. 
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Part I11 i s  subdivided i n t o  2 sections: 

1) ~n Section A, a qenerslized p r t u r b a t i a n  solution i s  
0 

se t  up for CY Min < CY - < 90 This 

i s  based on the fact  that i n  the physical cas? of interest ,  oAe 

of the caefficients (9) i n  the equations i s  mc,i larger  than sll 

others for  CY > CY Mfn. 

Mitropolsky is  used t o  avoid the possible appoarance of secular 

( i-e.  time proportional) terms; the first-order resul ts  are then 

applied t o  the cas, QS CY = 90' and CY Min < CY : 90'. 

the solution w i l l  give A l d n  Waves as a special  case and a lso  

more compllcsted waves propsqating i n  a ccinpressible gas. 

w&ere CY Mn i s  a small angle 

Tbe asymptotic aethod of Bcgoliubw an8 

For CY = 90°, 

For CY Min 
0 6 3 0  , the gas always behaves cauprcssibly. 

2) I n  Section B, it is shown that for CY = Oo, the  solution 

reduces t o  integral, giving linea?* pdxirized waves. 

N!lmerical r e a u l t s  are d iscused  In part IV f o r  p lasm 

parameters corresponding t o  the earth 's  ionosphere and the  various 

spproxi~uaticms are discuessd In the conclusion. 

t 

. 
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11, FOMJLA!TION 

A. Derivation of the differential equatians. 

W e  start with the follaring equations in the wave fraare, 

ax 
a becom!% ;.- ’ s *  

a + a  
. & + Y e -  in which the apexator - 

a 
a2 
- x 3 = 0  

4n 
X I ! = -  

C 

Cmtinuity equationr - a (n ; ) = o  u u  a2 

Momentum equation: 
c 

It w i l l  be assued 

ful ly  ionized hydrcgenj 

electrons (e = e, e = P e 

+ v -  A =  % ( 2  
m 
CT 

that we are dealing with 

C 

8 PhSIUE O f  

u is  an index denatinq the protans or the  

-e) with densit ies no and velocit ies ;lb, 
and 2, ff are the local e l ec t r i c  and m e t i c  fields, Thie choim 
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is appropriate f o r  our later application t o  the earth's ionosphere. 

We orient the x - sxis p a d e l  t o  the direction of prupsgaticm, 

so thst  all vsrisbles are Amdiom of x only. 

vu has coaponents (uT# v 

The velocity 
4 w along the(x, yy z) axes. Sipilarly,  

by Q 
4 3 (Ex' E EE), B t (Bx, By) B,). y' 

substituting this in  equation (2) 

where : 

. 
. 



. 
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u = u e = u  
? 

wi then define a density flux P for bath types of particles: 

The other 2 scalar equations As= (4) give in the s.%ms way: 

W e  also mduce the 11tmntu~ cqustian ( 6 )  t o  3 scalar equations 

in Ua, Y ~ ,  wcr by fd u g n s i a n .  Substitutlng (l3), (14) - 
in the first one, ~u?arnlng mer 0,  defining at = m P + me and F = "tlw 
(Total muss flux in the direction of wave propagation), we obtain: 



! tMs may be integrated d i r e c t l y  to  give: 

a fanifliar conservation equation. 

The second and third scalar equations derived Pram ( 6 )  also  

lead t o  correspoading consexvatton equations along the 2 tranaverss 

dimctions. With the substitution of ( 7 ) ,  (13) (14), they take 

the formr 

where n and g are constants. 
2 9 

We now eliminate and N as varlablea. We r2turn t o  the 

scalar equations obtained fram (6), but do not sum m r  0, obtaining 

expressions for 

c 

1 

and electrons. using up = s, 
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and subtracting the first 2 equations g-lves: 

F 
U 

different ia te  the resulting equations with respect t o  timer 

N e x t ,  we substi tute N = - fro% (12) i n t o  ( l3) ,  (14) and 

. .  . 
Y sild we lpay be elinbated from the hst 4 scalar P where  

equa3ims frcm (6). This yields 
P' 

Finally, we mst eliminate the variables u, v vej w w P P? e 
from equations (19) an13 (20); U i s  direct ly  obtained from (l?), 

and the  transverse vslocity components obtained from (131, (14), 

(16) , (17) after a conaidemble amouirt of algebm. 

of theat q W t i t i e 8 ,  equations( 19) and (20) became: 

After sxbsti tution 
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It is convenient t o  rewrite the  above equations i n  a dimmsionless 

form by defining 8me new dimensionless variables and constants: 

e n  

0 m m  
P e  

2 
n - = k  

2 

m = e=- k2bl 

7 t = -  

0 
n 

n 

( m - m  ) S W  e p  0 x =  

p = - 2 b 2  1 
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The resulting equations further become homogeneous in the 

derivatives by the formal substitution of - = - and (12). 
dx at 

We then obtain: 

% = m + p b  + b  { l - ( b 2 + B : ) ] + q -  a2 
Y Y  Y 

dT2 w 

db 
Z {l- ( b 2 + b 2 ) } -  Q Y 

d2b - = n + p b  + b  
2 - 2 z Y 

d?' d T  

!€!he problem is t o  solve (21) and (22) f o r  soy given angle Cy.  

However th i s  c m o t  be done with the existing equations since b 

and bZ ( w e  do not need t o  worry about the cmstant  bx= bl) are 

the dimensionless components of the total local  instantaneous 

magnetic f ie ld ,  and t h i s  last vector w i l l  generally make an angle Y 

w i t h  the plane waves where, of course, y is itself some unknown 

f b c t i o n  of position. 

Y 

This d i f f icu l ty  is easi ly  resolved by introducing 2 new 

and bZ (refer  to Figure 1): variables B and Bz t o  replace b Y Y 

= bl = b s i n  0 COS f bx 0 0 0 

b = b  + B  = b  s i n e  0 s i n l o + @  Y 
Y 2 Y O  
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Wave 
Frame 

t '  
La bora tory 

Z 

t 

Y 

Figure 1. Coaponents of 'b and b 0 in the Wave Frame 



I .  

So fa, the position of the x axis in space hss been 

detendnzd; the orientation of the y, z axes is ~rbitra,ry. 

the eq\llrtlone for B 

However ,  

and B, barn their rost sgrretric form when 
Y 

b = b  0 In that c1-3 
2 3 

I :  
= b  s i n a  bx = bl 0 

It i s  -0 usem to  substitute T = qTJ; (q2)-' = g . After 

them changes, (U), (22) take the form: 



where the coefficients A, B, G$ q (or e) are constante with 

the angle Q as a p-ter. They are: 

B cos a C o s  a 

4m0 2 k  
- Q -  

0 F = -  

B cos cy cas 
0 

1 Boain a! (a, .. mp) s in  cy (me - m 1 P 
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B. h a h a t i a n  of the coefficients i n  the  equations, 

In oAer  t o  so$= the coupled equations (23) and (24) in 

a given situation, their coefficients nust be known. 

quantities depend 02 a, Bo (which we a s a m  t o  be 0.39 ~EIUSS 

correspor&nq t o  the mean ge-etic f ield at 8n a l t i tude  of 

200 ka. above the earth ' 6  surface) no, flZl T$, E2 and Es. 
last 5 constants are so far arbitrary, since they w e r e  defined 8s 

integration constants. 

order of magnitude of these constants. 

These 

me 

W e  naw briefly autllne how to ojtain the 

1- From (15) and the definitions of a, 5, 

we *quire that 2 o so that the characteristfcs do not 

For a = go0, it will later be s h m  (refer t o  cross themselves. 

1II.A) t h a t  there is an exact sslutian: 

cqb I, where B 2 0 

we obtain mer substitution: 
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k2B 

0 n =- , where 1 g k < QD 

4l-r 0 

k2B02 

~clore 3enerally, we also take no = - 
4Tr 

and adjust 

the amplitude of B Bz t o  keep 
Y’ 

this equation, we obtainr 

where K K and K are coiistants. W e  take the average of 

th i s  equation uver 1 cycle, noting that 
1’ 2 9 

$ = 0, t = K, e tc  . I mt Y %  

3 .  Frcm the symrPetr i ca1  choice of the y - z axes 



i rp l les  that A = G = o for cy = p* and ye  xi^ return 

t o  this p i n t  in part 111. A. 
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111. SOLU!rION 

0 A. Solution for a H n  < a S 9 . 

A = A (By, &.), r = r ($y, $ , I t  snd e i a  S U I B ~ ~ .  The zeroth- 

oriier solution (e = 0) of these equations is tr iv ia l :  

W e  naw differentiate (23') and (24') once, and rearrange 

the results to uncoiple the dcrminatins terms: 
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It is now poseible t o  w r i t e  a perturbation expansion when 

e f 0, using the Ebgoliubuv-Mitropolsky fomnlism*: 

@ 8, = a cca y + e (a, y> + 

where ! 

Using these expressions, the left-hand sides of equations 

(26) may n w  be written after solae algebra, t o  order e : (25) 

S 

the theorj  of Non-Linear Oscillations, 1961, Gordon and Breach 

Science Publishers, New York. 

N. Ne Bogoliubw and Y. A. Mitropolsky, Asymptotic Methods i n  
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These results should be equated t o  the 

corresponding quantitiee i n  the right hand sides! 

whore fo and 1 are the zeroth-order expansions of M and N. 
0 

We w i l l  solve (27) (28) for $hE”ky Fourier expanding fo, lo 

as w e l l  as fj (1) (11 
y’ 8, 



We substitute these aeries i n  (27), (28) ana equate coefficients 

o f  identical hamonice t o  get : 

y1 (a) = w 1  (a) = ul (a) = rl (a) = o 

for  n = 2, 3> . . r 

-pn (a) 
r (a) = 

n (n2-1) n 

With the conditionat 

We note that yo (a) and uo (a) remain undetermlned so far, 

We will because they have disappeared i n  the differentiations, 

ret- to this point i n  the next section. 
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W e  now apply these general results to the two cases of interest: 

I) a = goo 

men C = D = E = F = 0. After substitution of the  zeroth 

order results and sum simplifications, fo  and lo f i n a l l y  bc -cOIlEi 

W e  i d e n t i e  these terms with those of the Fourier expansions 

and then apply the general results on p a s  19 to get: 

v n = ~ = u = r = O f o r n = 1 , 2 , 3 ,  . n n n  

% = O  

H o u e v e r ,  vo(a) and u (a) are s t i l l  mdeterdned so far. 
0 

Since += 0, the only effect  of vo(a) and uo(a) i s  t o  add snuill 

constant tenas t o  8 (1) and flZ(l) j front their definitions, the 

ti= average of 8 r' 
vo(a) = uo(a) = 0. 

Y 

Bz over 8 cycle mat be zero. Tfierefore 
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We then have, t o  first order, 

B y  = a s in  Y $, = a cocl y 

We first substi tute C = 3F, D '48, E = 2F and evaluate 

1 as  before: fo.' 0 

1 (a, Y) ={(A + 2F a2) + 2a(Eha2) s i n  'f - 3Fa2 co8 2Y + 3Fa2 sin 2y] 
0 

Proceeding as i n  the  case a = 90°, w6 obtain: 

A + a2 = go(a) = -po(a) = o 
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% = O  

w5ich gives the first order solution: 

% = a2-B 

(COS 2~ - sin 3) e Pa2 = a s b y + -  8, 2 

8 , = a c o e Y - -  e 2 (cos 21 + sin 2r) 

- =  & o  
dT 

Hawever ,  it can be verified that the above results do not . 

quite sa t i s fy  the original equations (23'), (24') t o  order 6 ,  

although they sa t i s fy  exactly the derived equations (25), (26) 

from which they were obtained: 

informstion i n  differentiating (23'), (24') t o  obtain (25), (26) 

This can be r eed ied  by adding the t e n w  e$ a COSV and e 8  a siny 

t o  B 

(23'), (24') as w e l l  as  (25),  (26) t o  order 53 it a lso  reduces 

exactly t o  the solution found prerlously f o r  a. = 90'. 

t h i s  i s  because we l o s t  same 

and 8, resprtctively. !Be modified solution will now sa t i s fy  Y 

The final first order solution then tskee the form, f o r  

a H n  < u 5; 9': 

(cos 2~ + s i n  2'1) + e P2a s in  Y e Fa2 B, = a cos Y - - 2 
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d a o  - =  1 + 8 (a2-B) A + 2sa2 = 0 where - = 
dT dT 

L e t  us first consider the case ct = 90' i n  more detai l ,  i . e .  

F = 0. 

shif 't).  The first order solution then becomes the exact solution, 

giving circularly polarized waves propagating i n  an incompressible 

medium ( m e $  Waves). 

An interesting special case is t o  choose a2 = B (No frequency 

This agrees with the conclusions of Ferraro. 

After some algebraic manipulations, we can then obtain B = By (x), 

B = B (x) exactly: 
Y 

Z Z 

Bx = Bo 

The wavelength h is therefore given by: 

VA 
2rr m m l - -  p e  

e e (m - me) J4rr N (me + mp' n 
P 

eBo 
where ne = - 

m e 

be verified from (15) tha t  

i s  the electron cyclotron frequency. It may also 
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For a2+ B, the waves are m o ~  ccxplicated and propagate 

i n  a compressible  dim. 

anglee. 

W s  is  alxsys the case f o r  intermediate 

W e  observe that the candition A + 2ps2 = 0 always gives 

a relat ion between the transverse e l ec t r i c  f i e l d  E' and the 

angle at fo r  a given f i e l d  energy density and the amplitude a. 

Finally, it Bslst be stressed that  t h i s  solutian is  only 

valid for a( 

the field energy density and the type of ions present. 

t o  the definit ion of e on Page 12). 

i n  part IV. 

< a s goo. The minimum angle a  in depeds  COI 

(%fer  

This is  also discuseed 

B. solution f o r  a = 0' (mnetosonic  waves). 

Then q = 0 and equations (a), (22) reduce to:  

A first possibi l i ty  i 6  that 2 may IS l inear ly  polarized slong 

3 j then B = 8, = B at a n  times and equations (21*), (22 ' )  becoms 
0 Y 
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identical: 

d2 B d2BZ a2 B 
Y = - -  - - = A +  B ( B +  D )  + p2 ( c +  E +  F) - 2p3 

dT2 dT2 de 

From intuit ion,  w e  expect t o  obtain inf in i te ly  periodic solutions 

i n  B for  res t r ic ted values of A, By D, . . since the  last equation 

has the form of a modified simple-harmonic osc i l la tor  equation. 

A more formal way of seeing t h i s  is  t o  transform the d i f fe ren t ia l  
3c 

equation t o  an integral: 

where Jj is  a constant. 

writ ten as: 

It follows tha t  the  formal solution may be 
4 

The allowed l i m i t s  on A fo r  which a periodic solution w i l l  exist 

may be obtained by solving 

*This approach is  similar t o  a treatment developed by David, L i s t  

and Schlcter, except t ha t  w e  use B as the variable instead of the t o t a l  

f i e l d  intensity b: t h i s  adds a cubic term t o  the "potential". 
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2 
k ’  so as t o  have real roots. After substituting C + E + F = - 

B + D = -*3-, we obtsin: 

These Udts are consistent with thoss obtained f o r  the 

electric  f i e l d  E’ using the total f i e ld  b instead of 8.  

return t o  Page 13 and Investigate the no-looping condition fo r  CY 

this cosaditian m y  be expressed 98 fcrllavs: 

If re 

Oo, 

Since E* (or A) pppryhave a q  

C k f i -  2k ’> 

value between 2 finite limits, the 

wavelength 1 is not Uniquely dztemained i n  this case, but w i l l  deped 

upon the parameter A and the initial canaitiossin a rather caupucated 

wCry* 

became8 infinite: 

There are 2 interesting apecial cases in xhich the wavelength 

I :  

a) W h e n E ’ - O ( A = A k x =  k + - I f  we set the 
4ks 

initial coslditianrr 80 t ha t  
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Physically this means khat we do not really have wayes 

any more, all physical variables are constant in space and tine: 
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A nuiber of arbi t rary constants (no, . .) were introduced 

during the  derivation af the or ig ina l  di f fe ren t ia l  equations, 

and the total number of modes is  themfore very great3 hc;rwever, 

we simply want t o  i l l u s t r a t e  the t y p i c a l  behavior of the waves, 

so we first &cided OII a single value of no or k =a=*, and 
a' = B- The constant is determined fram the exact result f o r  

a = goo an Pages 2j- 

i n  the d i f fe ren t ia l  equations were evaluated f o r  12 differeat 

angles using the formulas on Fages 12 - 15 while A itself was 

determined fraa the conditioa A + 2FB = 0 found on Page 23 

far a mn< a s woj for a = o , any value aay be taken between 

the limits given ox Page 25 - 26. 

wavelength, we to& the typical value A = 0. 

a~ other coefficients (except A> 

0 

I n  order t o  ham 8 f i n i t e  

The exact equetiom(23), (24) w e r e  then solved numerically 

for 12 ~ a l u e s  of a on an IBM 7094 computer u e i q  i n i t i d  values 

caImJated from the perturbation resfits (29), (30). 

The wavelength A wss determined t o  a good accuracy f o r  each 

angle by inspection of t h e  tabular results for B and Ba against 

x, noting at which points the f i e l d  quantit ies returned t o  t h e i r  

initial values. 

Y 

For Q = goo, this nethod gave X Y 122 cm., which  
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agrees quite w e l l  with t h e  analytical  r ssu l t  (123 cm.) calculated 

from t he  formla an Page 23, 

me f i e l d  quantities a m  plotted against x ( fo r  o x c X )  

f o r  each angle on Pages 33 - $+, and a graph of X against a is  shum 

on Page 351 the results for  o s u < 2'5' are interpolated since 

the accuracy of the perturbation expansion is not good for very 

small azgles. 

I 

The order of laagnitude of the minimxu angle a Mfn at which 

the perturbation theory w i l l  break down m y  be obtained apprclximately 

by using the r a t i o  test: 

for the parameters chosen i n  the example. 

e2 < 1. This gives a H n  = 0(lo) 
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v. coNcLmIoN 

The problem of n o n - b a r  plane waves propagating in a 

fu l ly  ionized hydrogen plasm under an upplied magnetic f i e l d  

Bo a t  an angle ( 90° - a) between the wave vector and Bo hsS 

heen divided in to  2 parts: if the angle a is  larger than a 

certain c r i t i c a l  angle d Mln, a first-order perturbation solution 

nrs obtained f o r  a &fin < a s 9Ooj  f o r  a =t Oo, the solution is 

reducible t o  an integral  and is multiply valued; fo r  0 

the problem rePrains unsolved. 

here ( 0  (lo)), so t h a t  the perturbation result gives a solution 

wer most n l u e s  of a- 

u S a Mn, 

Fortunately, a M h  is quite a s a l l  

Because of local fluctuations in Bo and N, the "infinitely 

periodic waves" descrlbed here will actually only propsgate 

undistorted in regions of the ionosphere wh-these quantit ies 

are constant. 

hydrogen plasna" is only a3 idealization t o  keep the  equations 

tractable. 

Finally, the assumption of a "filly ionized 
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I am indebted t o  Dr. Do A. Tim f o r  useful discussions 

ami initially suggesting this problem, and t o  Rr. D. C. Montgomery 

who supplied a copy of the imprtant paper of -vis, LZst and 

Schliter. 

i n f o m t i o n  on the gecaasgnetic f i e l d .  

differential equations for the n m r i c a l  solution was skilfully 
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